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Introduction to Network Meta-Analysis (NMA)

• NMA is an extension of pairwise meta-analysis which allows for 
the comparison of 3 or more treatments simultaneously.

• Advantages

✓ Allows the comparison of treatments that have never been 
compared directly in individual studies.

✓ Combines both direct and indirect evidence resulting into 
estimates with highest precision.

✓ Allows for a relative ranking of the competing treatments.

1Chaimani A et al. Chapter 11, Cochrane Handbook for Systematic Reviews of Interventions 2019



The Issue of Rare Events in Meta-Analysis

• Standard meta-analytical methods (i.e. Inverse-Variance model) are unsuitable for rare events.

✓ They rely on large sample approximations (approximation of binomial distribution from normal 

requires an adequate number of observed events).

✓ In the presence of studies with zero-events calculation of relative treatment effects is 

impossible. 

• Results are prone to substantial amounts of bias.

• In extreme cases where most studies report zero events meta-analysis can be pointless.
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Available methods in meta-analysis

• Standard IV with a constant number added to tackle zero-event studies (e.g. 0.5 correction)

• Mantel & Haenszel (MH) and Peto methods which are non-parametric fixed effects models.

• Models with exact binomial distribution.
• Logistic regression model
• Binomial-Normal model

• Models with different distributional assumptions.
• Beta-Binomial model.
• Non Central Hypergeometric-Normal (NCH) model.

• Bayesian methods (sometimes not suitable for rare events as even vague priors may strongly 
influence the results.
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extended to NMA

Stijnen T, et al. Stat Med. 2010
Kulinskaya E. Stat Model. 2014
Efthimiou O, et al. Stat Med. 2019



NMA as a logistic regression model

• Binomial distribution: 𝑟𝑖𝑘~𝐵𝑖𝑛 𝑛𝑖𝑘 , 𝑝𝑖𝑘 ,

• Logistic regression for NMA: 
𝑙𝑜𝑔𝑖𝑡 𝑝𝑖𝑘 = 𝑎𝑖 + 𝑋𝑖𝑘𝑑𝑏 𝑖 𝑘

where 𝑋𝑖𝑘 = ቊ
1, 𝑖𝑓 𝑘 ≠ 𝑏 𝑖

0, 𝑖𝑓 𝑘 = 𝑏 𝑖
reference treatment

✓ The model relies on maximum likelihood estimates (MLE) that are biased when large 
sample approximations are not valid.

✓ Logistic regression cannot handle studies with zero events.

✓ For individual studies a common way to analyze rare events for logistic regression 
models is to use a penalty to the likelihood function.
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Dias S, et al. Med Decis Making 2013.
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Penalized logistic regression

• A modification was proposed by Firth (1993) in order to improve the performance MLE’s in terms
of bias.

• The method modifies the binomial likelihood function by penalizing it with Jeffrey’s prior.

𝐸 መ𝛽 = 𝛽 +
𝑏1 𝛽

𝑛
+
𝑏2 𝛽

𝑛2
+⋯

Sample size

Bounded functions of true values 

• Mathematical properties:

• The modified likelihood provides improved estimates in terms of bias.

• It can handle zero-event trials.
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Penalized Likelihood NMA model

• Likelihood function for logistic regression NMA: L pik rik, nik = ςi=1
N ςk∈Ai

nik
rik

pik
rik(1 − pik)

rik

✓ The inner product ‘searches’ for the treatments within each study.

✓ The outer product summarizes all the information across the set of studies.

✓ Both within and across studies comparisons are taken into account.

𝐿 𝑝𝑖𝑘 𝑟𝑖𝑘 , 𝑛𝑖𝑘 |𝐼 𝑝𝑖𝑘 |
1
2𝐿∗ 𝑝𝑖𝑘 𝑟𝑖𝑘 , 𝑛𝑖𝑘 =

Modified likelihood for NMA

Jeffrey’s 
prior

𝐴𝑖 =
all indices of treatments compared

in study i

Penalized 
Likelihood
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Extension to random effects

• We incorporate heterogeneity using a multiplicative term

• The variance of the fixed effects model estimates is multiplied by a constant number 𝜑

𝑉𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑉𝑓𝑖𝑥𝑒𝑑 ∗ 𝜑

• The estimation of the unknown parameter 𝜑 is usually implemented using Pearson’s statistic

• An enriched estimate with better performance according to simulations has been proposed in the literature 
for the case of rare events (Fletcher DJ. Biometrika 2012)

ො𝜑=
ෝ𝜑P

1+ ҧ𝑠
, 𝑠𝑖𝑘 =

𝑉𝑖𝑘
′

𝑉𝑖𝑘
(𝑟𝑖𝑘 − 𝐸(𝑟𝑖𝑘))
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Simulation Scenarios

Scenario Treatments in 

the network

Participants 

per arm

No studies per 

comparison

Heterogeneity 

(τ)

Event rate

(%)

1 5 100-200 2 0 0.5-1%

2 5 100-200 2 0.1 0.5-1%

3 5 100-200 4 0 0.5-1%

4 3 100-200 8 0 1-2%

5 3 100-200 8 0.1 1-2%

6 3 100-200 8 0 0.5-1%

7 3 100-200 8 0.1 0.5-1%

8 3 100-200 8 0 0.5-5%

9 3 100-200 8 0.1 0.5-5%

10 3 100-200 8 0.1 0.5-10%
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Simulation Results
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bias under certain scenarios.
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✓ generally good performance
✓ may suffer from important bias in 

the presence of very low event 
rates and many treatments.
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✓ consistent performance across 
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Illustrative Example
• A network comparing the safety of different drugs for

chronic plaque psoriasis.

• Outcome: Adverse event of malignancies

• Network characteristics:

✓ 6 treatments

✓ 43 studies and 63 comparisons

✓ Range of event rate: 0-1%

✓ Mean sample size per arm: 226

✓ 31 zero event trials

10Afach S et al. Br J Dermatol 2020.

Anti-IL 12/23Placebo

Anti-IL 23

Anti-TNF Apremilast

Anti-IL 17

12 studies and 12
comparisons are
available after
the exclusion.



Results

Favours Treatment Favours Placebo
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Conclusions

• NMA of rare events is a challenging field and only a few methods have been proposed to date 

for analyzing such data.

• Our penalized likelihood NMA model provides a promising alternative for NMA of rare events

✓ Good performance in terms of bias based on the simulation results

✓ Preserves the connectivity of the network by avoiding study exclusion (i.e. 0-0 studies)

✓ Under certain conditions gives more precise results

• No meta-analytic method is uniquely best in the presence of studies with low event rates

• Sensitivity analysis should always take place to investigate the robustness of results under 

different analysis schemes. 12
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