

Objectives & Methods

✓ To develop a new NMA model appropriate for rare events which will

- reduce bias and improve the accuracy and precision of relative effect estimates
- allow inclusion of double zero studies and **preserve the connectivity** of the networks

✓ To provide a **user-friendly R** package to allow researchers routinely using our method in NMAs with rare events

We adapt and extend well-established methodology from the analysis of individual studies

NMA as logistic regression <u>Binonial likelihood</u>: $r_{ik} \sim Bin(n_{ik}, p_{ik})$ where r_{ik} ,: # events, n_{ik} : # participants, p_{ik} : probability of event per study (i) arm (k) $logit(p_{ik}) = a_i + X_{ik}d_{b(i)k}$ where $d_{b(i)k}$: reference, $X_{ik} = \begin{cases} 1, if \ k \neq b(i) \\ 0, if \ k = b(i) \end{cases}$

Design of simulations (10 different scenarios – 1000 draws each)

- Participants per arm: 100 200
- Treatments in the network: 3 5
- Studies per comparison: 2 8
- Range of event rate: 0.5% 10%
- With and without heterogeneity

	Based on penalized likelihood logistic regression	Removes the of maximum expansion amour	e 1 st order term likelihood bias – the largest nt of bias	
Standard NMA likelihood function				
$L(p_{ik} r_{ik}, n_{ik}) = \prod_{i=1}^{N} \prod_{k \in A_i} \binom{n_{ik}}{r_{ik}} p_{ik}^{rik} (1 - p_{ik})^{rik}$				
Penalized NMA likelihood function Jeffrey's				
$L^*(p_{ik} r_{ik}, n_{ik}) \neq L(p_{ik} r_{ik}, n_{ik}) I(p_{ik}) ^{\frac{1}{2}}$ prior				
	Incorporation	n of heterogeneity		
	through a m	ultiplicative term φ :	$\varphi > 1$ indicates presence of	
	$V_{random \ effec}$	$_{ts} = V_{fixed\ effect} * \varphi$	heterogeneity	

'enriched' estimate specific for rare events:

 $\hat{\varphi} = \frac{\hat{\varphi}_{\mathrm{P}}}{1+\bar{s}}, \ s_{ik} = \frac{\widehat{V'_{ik}}}{\widehat{V_{ik}}}(r_{ik} - \widehat{E}(r_{ik}))$

All analyses performed in R v3.6.3

Results

