Detecting outlying studies in network meta-analysis using Bayes factors

SILVIA METELLI¹, DIMITRIS MAVRIDIS², ANNA CHAIMANI¹

¹Université de Paris, Inserm Research Center of Epidemiology and Statistics, France ²University of Ioannina, Department of Primary Education, Greece

41st Annual Conference of the International Society of Clinical Biostatistics, 23-27 August, 2020

Overview

- **Context**: systematic reviews/evidence synthesis
 - Network meta-analysis (NMA): simultaneous comparison of multiple treatments integrating direct with indirect evidence in a network of studies
- **Outlier**: study with a clearly different effect estimate (e.g. extreme effect size)
- **Motivation**: outliers can bias NMA conclusions wrong clinical decisions

• **Objective:** to develop (Bayesian) approach to detect outliers and to explore their influence on NMA results

note: despite flexible & commonly use, limited work so far on Bayesian outlier-detection methods in NMAs

Motivating data

Non small cell lung cancer network

- 112 trials, 62 treatments
- many 'weak' links: outliers?

Smoking cessation network

- 24 trials, 4 treatments (types of counseling)
- fully connected, well studied network

N studies, T treatments

For each study *i*: $y_{i,XY}$ observed relative treatment effect (with standard error)

$$y_{i,XY} \sim N(\theta_{XY} + \delta_{i,XY}, \sigma_{i,XY}^2),$$
$$\delta_{iXY} \sim N(0, \tau_{XY})$$

- \forall (X, Y): summary relative effect $\theta_{XY} = \theta_X \theta_Y$, (θ_X, θ_Y basic parameters)
- common heterogeneity $\tau_{XY} = \tau$ across studies
- account for multi-arm trials: $\delta_i \sim N(0, \Psi_i^2)$, Ψ_i^2 between-study covariance matrix
- **Bayesian approach**: need to specify priors for parameters to estimate (basic parameters, heterogeneity): $\theta = (\theta_1, ..., \theta_{T-1})^T \sim P(\theta), \quad \tau \sim P(\tau)$ (typically vague priors are assigned)

- Outlier: study with a 'shifted' mean different definitions (e.g. shifted variance) lead to different models
- Assumption: effect size of outlying study *i* shifted by a factor $v \in R$

$$y_{i,XY} \sim N(\theta_{XY} + \nu i + \delta_{i,XY}, \sigma_{i,XY}^2), \quad \delta_i \sim N(0, \Psi_i^2)$$

Testing for outliers:

• For each study *i*, we test if $y_{i,XY}$ has a shifted effect:

$$H_0: v_i = 0; H_1: v_i \neq 0$$

 $if v_i \neq 0$ mean-shift model looks more plausible: study *i* is a potential outlier Bayes factors offer a principled way of testing such hypotheses

- We have two models: standard model $M_0(H_0)$, mean-shift model $M_1(H_1)$
- from Bayes theorem we have: $\underbrace{\frac{P(M_1|y)}{P(M_0|y)}}_{\text{posterior odds}} = \underbrace{\frac{p(\theta_1)}{p(\theta_0)}}_{\text{prior odds}} \times \underbrace{\frac{\int L(y|\theta_1, M_1)P(\theta_1|M_1)d\theta_1}{\int L(y|\theta_0, M_0)P(\theta_0|M_0)d\theta_0}}_{\text{Bayes factor}}$
- Bayes factor (BF): change from prior odds to posterior odds

provides a measure of plausibility of H₁ over H₀

- We test this hypothesis for each study: leave-one-out cross validation (LOO-CV) scheme
 - standard backward search
 - modified search (restricted to groups of studies comparing the same treatments)

• Posterior predictive p-values (Bayesian p-values): measure departure from the assumed (NMA) model

where:

- y^* hypothetical future values generated from predictive distribution
- $D(\cdot)$ some function measuring the discrepancy of model vs. data y
- $P(\cdot|y)$ posterior distribution of (θ, y^*) given y
- we propose two choices for D:
 - 1. model likelihood
 - 2. tailored measure of 'outlyingness' for each study

Down-weighting scheme (post-detection step)

• What to do once outliers are identified? Down-weight via informative priors.

Simple idea:

- 1. NMA model with additional variance weight $(0 < w_i < 1)$ for outliers only
- 2. perform the NMA analysis again
- 3. compare results

	non-outlying studies	outlying studies	
Model	$y_{i,XY} \sim N \big(\theta_{XY} + \delta_{i,XY}, \sigma_{i,XY}^2 \big)$	$y_{i,XY} \sim N \big(\theta_{XY} + \delta_{i,XY}, \sigma_{i,XY}^2 / w_i \big)$	
Informative prior	None	$w_i \sim \text{Beta}(a, b)$ a,b centered at values <0.5	

Simulation study:

• assess performance of the methods proposed

• Two real networks of interventions:

• demonstrate the methods in practice

Simulation study: networks geometry and settings

- Balanced design
 - 10 studies per comparison ٠
 - fairly well connected ٠

- Unbalanced design
- 1. Well connected

(5)

3

(4)

(8)

Simulation study results (detection)

Unbalanced case (fairly connected network), 3 artificial outliers

	Bayes Factor (BF)* *		BF>3 moderate, 3 <bf<10 substantial<br="">10<bf<150 bf="" strong,="">150 decisive</bf<150></bf<10>		
	au = 0	$\tau = 0.032$	$\tau = 0.096$	$\tau = 0.287$	
Outlier 1	511.1	287.1	9.1	2.5	
Outlier 2	118.2	1540.1	2.7	1.3	
Outlier 3	9284.1	32.1	3.2	0.98	
No outliers	None	None	1 BF ~ 2	1 BF ~ 3	
Bayesian p-value * * D based on <i>outlyingness</i> measure					
	au=0	$\tau = 0.032$	$\tau = 0.096$	au = 0.287	
0.11.1					
Outlier 1	0.001	0.001	0.01	0.12	
Outlier 1 Outlier 2	0.001 <0.01	0.001 <0.0001	0.01 0.001	0.12 0.07	
Outlier 1 Outlier 2 Outlier 3	0.001 <0.01 <0.0001	0.001 <0.0001 0.01	0.01 0.001 0.07	0.12 0.07 0.22	

Simulation study results (down-weight)

- Unbalanced case (poorly connected network), 3 artificial outliers
- ♦ Relative bias= $(\hat{\theta}^{MC} \theta^{true})/\theta^{true}$, with $\hat{\theta}^{MC}$: Monte Carlo average of estimated effects

Lung cancer network		Smoking cessation network	
Study 67:	BF=1353.2 p-value=<0.001	Study 3:	BF=287.8 p-value=<0.01
Study 42:	BF=876.1 p-value=<0.01		
Study 7 :	BF=10.2 p-value=<0.01		

Results (compared with forward search (FS) algorithm for NMA, Petropoulou 2019):

- 3 potential outliers in lung cancer data
- 1 potential outlier in smoking cessation data
- FS detection method: similar results
- sensitivity analyses and down-weighting suggest first two studies in lung cancer and study 3 in smoking data are influential

Conclusions

- outlying studies need attention when synthesizing evidence
- two outlier-detection methods proposed (model-based Bayesian)

• promising results:

- in simulations, good performance of both methods, down-weight improves estimates precision
- in real data, some detected studies proved influential
- amount of heterogeneity and number of studies play crucial role

Future directions

- extend to multiple outcomes
- use external data to inform down-weight (e.g. informative *power priors*)... but external data not easy to get!

Some useful references

- 1. Lu AG and Ades AE. Assessing evidence inconsistency in mixed treatment comparisons. *Journal of the American Statistical Association*. 2006;474:447-459.
- 2. Salanti G, Higgins JP, Ades AE, and Ioannidis JP. Evaluation of networks of randomized trials. *Statistical Methods in Medical Research*. 2008;17(3):279–300
- 3. Mavridis D, Moustaki I, Wall M, and Salanti G. Detecting outlying studies in meta-regression models using a forward search algorithm. *Research Synthesis Methods*. 2017;8(2):199–211.
- 4. Petropoulou M, Salanti G, Rucker G, Schwarzer G, Moustaki I, and Mavridis D. A forward search algorithm for detection of extreme study effects in network meta-analysis. Manuscript, 2019.
- 5. Zhang J, Fu H, and Carlin BP. Detecting outlying trials in network meta-analysis. *Statistics in Medicine*. 2015;34(19):2695–2707.
- 6. Jeffreys H. Theory of probability. Oxford University Press, 1998.
- 7. Raftery A. Bayesian model selection in social research (with discussion by Andrew Gelman & Donald b. Rubin, and Robert Hauser, and a rejoinder), 1995.
- 8. Kass R, Raftery A. Bayes Factors. Journal of the American Statistical Association. 1995; 90(430): 773-795.

THANK YOU!