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• Context: systematic reviews/evidence synthesis 

• Network meta-analysis (NMA): simultaneous comparison of 
multiple treatments integrating direct with indirect evidence 
in a network of studies 

• Outlier: study with a clearly different effect estimate (e.g. extreme effect size)

• Motivation: outliers can bias NMA conclusions       wrong clinical decisions 

• Objective: to develop (Bayesian) approach to detect outliers and to explore their influence on NMA results 

note: despite flexible & commonly use, limited work so far on Bayesian outlier-detection methods in NMAs 

Overview
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A vs C trials B vs C trials
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Non small cell lung cancer network 
• 112 trials, 62 treatments
• many ‘weak’ links: outliers?

Motivating data
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Smoking cessation network 
• 24 trials, 4 treatments (types of counseling)
• fully connected, well studied network 

treatment

comparisons 
available 
(∝ n. of  studies)



N studies, T treatments

For each study i: 𝑦",$% observed relative treatment effect (with standard error)

𝑦",$% ∼ 𝑁 𝜃$% + 𝛿",$% , 𝜎",$%& ,

𝛿"𝑋𝑌 ∼ 𝑁 0, τ$%

• ∀ 𝑋, 𝑌 : summary relative effect  𝜃$% = 𝜃$ − 𝜃% , (θ#, θ$ basic parameters)

• common heterogeneity τ$% = τ across studies

• account for multi-arm trials: 𝛿"∼ 𝑁 0,Ψ"& , Ψ"& between-study covariance matrix 

• Bayesian approach: need to specify priors for parameters to estimate (basic parameters, heterogeneity): 

θ = θ', … , θ()' ( ∼ P θ , 𝜏 ∼ P(τ) (typically vague priors are assigned)

T2

T3

Standard NMA model: (Bayesian) random effects model
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• Outlier: study with a ‘shifted’ mean - different definitions (e.g. shifted variance) lead to different models

• Assumption: effect size of outlying study i shifted by a factor 𝑣 ∈ 𝑅

𝑦",$% ∼ 𝑁 𝜃$% + 𝑣𝑖 + 𝛿",$% , 𝜎",$%& , 𝛿"∼ 𝑁 0,Ψ"&

Testing for outliers: 

• For each study i, we test if 𝑦",$% has a shifted effect: 

𝐻*: 𝜈" = 0; 𝐻' : 𝜈" ≠ 0

𝑖𝑓 𝜈" ≠ 0 mean-shift model looks more plausible: study i is a potential outlier 
Bayes factors offer a principled way of testing such hypotheses 

Outlier NMA model: mean-shift model 
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• We have two models: standard model M0 (𝐻*),  mean-shift model M1 (𝐻')

• from Bayes theorem we have:

• Bayes factor (BF): change from prior odds to posterior odds 

provides a measure of plausibility of H1 over H0

• We test this hypothesis for each study: leave-one-out cross validation (LOO-CV) scheme 

• standard backward search
• modified search (restricted to groups of studies comparing the same treatments)

Outlier detection: cross-validatory Bayes factors
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Bayes factors

Suppose we have two alternative models M1(H1) and M0(H0):

M1: likelihood L(y |✓1), prior p(✓1)
M0: likelihood L(y |✓0), prior p(✓0)

Bayes theorem implies that:

P(M1|y)
P(M0|y)| {z }

posterior odds

=
p(✓1)

p(✓0)| {z }
prior odds

⇥
R
L(y |✓1,M1)P(✓1|M1)d✓1R
L(y |✓0,M0)P(✓0|M0)d✓0| {z }

Bayes factor

Bayes factor: change from prior odds p(✓1)/p(✓0) to posterior odds

(plausibility of M1 over M0)

5 / 15
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allows to quantify 
uncertainty of being outlier

• Posterior predictive p-values (Bayesian p-values): measure departure from the assumed (NMA) model

𝑝+% = 𝑃 𝐷" 𝑦$%∗ , 𝜃 ≥ 𝐷" 𝑦$% , 𝜃 𝑦

where:
• 𝑦∗ hypothetical future values generated from predictive distribution
• D(·) some function measuring the discrepancy of model vs. data 𝑦
• P(·|𝑦) posterior distribution of (𝜃, 𝑦∗) given 𝑦

• we propose two choices for D: 
1.  model likelihood
2.  tailored measure of ‘outlyingness’ for each study 

Outlier detection: Bayesian p-value (alternative method) 
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Build model 

Look for 
deviations
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• What to do once outliers are identified?  Down-weight via informative priors.

Simple idea:
1. NMA model with additional variance weight (0 < 𝑤" < 1) for outliers only
2. perform the NMA analysis again
3. compare results 

Down-weighting scheme (post-detection step) 
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non-outlying studies outlying studies 

Model 𝑦&,() ∼ 𝑁 𝜃() + 𝛿&,(), 𝜎&,()$ 𝑦&,() ∼ 𝑁 𝜃() + 𝛿&,(), 𝜎&,()$ /𝑤&

Informative prior None 𝑤& ∼ Beta 𝑎, 𝑏
a,b centered at values <0.5

Detection step

Post-detection
processing
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Applications

Metelli, Mavridis, Chaimani Outlier Detection in NMA

► Simulation study:
• assess performance of the methods proposed

► Two real networks of interventions:
• demonstrate the methods in practice 
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• Balanced design
• 10 studies per comparison
• fairly well connected

• Unbalanced design         1.  Well connected                2.   Fairly connected                  3.   Poorly connected

Simulation study: networks geometry and settings
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Simulated scenarios:

§ network geometries
§ 𝜏 ∈ {0, 0.032, 0.096, 0.287} (according to Turner 2012)
§ contaminate with 1 or 3 outliers 
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32 scenarios in total



Simulation study results (detection)
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Bayes Factor (BF)*                    *     BF>3 moderate, 3<BF<10 substantial
10<BF<150 strong, BF>150 decisive

𝜏 = 0 𝜏 = 0.032 𝜏 = 0.096 𝜏 = 0.287

Outlier 1 511.1 287.1 9.1 2.5

Outlier 2 118.2 1540.1 2.7 1.3 

Outlier 3 9284.1 32.1 3.2 0.98 

No outliers None None 1 BF  ̴ 2 1 BF  ̴ 3

Bayesian p-value*                      *     D based on outlyingness measure   

𝜏 = 0 𝜏 = 0.032 𝜏 = 0.096 𝜏 = 0.287

Outlier 1 0.001 0.001 0.01 0.12

Outlier 2 <0.01 <0.0001 0.001 0.07

Outlier 3 <0.0001 0.01 0.07 0.22

No outliers None None None 0.05

v Unbalanced case (fairly connected network), 3 artificial outliers 
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Simulation study results (down-weight)
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v Unbalanced case (poorly connected network), 3 artificial outliers

v Relative bias= ( J𝜃𝑀𝐶 − 𝜃-./0)/𝜃-./0, with J𝜃𝑀𝐶: Monte Carlo average of estimated effects
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Results (compared with forward search (FS) algorithm for NMA, Petropoulou 2019): 

• 3 potential outliers in lung cancer data 

• 1 potential outlier in smoking cessation data 

• FS detection method: similar results

• sensitivity analyses and down-weighting suggest first two studies in lung cancer and study 3 in smoking data are influential

Real data
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(a) Lung cancer network restricted to classes of treatments
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Targeted

Lung cancer network Smoking cessation network
Study 67:       BF=1353.2 

p-value=<0.001

Study 42:       BF=876.1 
p-value=<0.01

Study 7 :         BF=10.2 
p-value=<0.01

Study 3:        BF=287.8 
p-value=<0.01

--------

--------



Conclusions

• outlying studies need attention when synthesizing evidence 
• two outlier-detection methods proposed (model-based Bayesian)

• promising results:
• in simulations, good performance of both methods, down-weight improves estimates precision
• in real data, some detected studies proved influential 

• amount of heterogeneity and number of studies play crucial role

Future directions

• extend to multiple outcomes 

• use external data to inform down-weight (e.g. informative power priors)... but external data not easy to get!

Final Remarks
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